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1 Introduction

A power index measures the statistical probability of a voter being instru-

mental in a voting situation. Power indices have been used to evaluate the

distribution of power in currency unions (Berger and Mueller, 2007), the In-

ternational Monetary Fund (Leech, 2002), the Bretton Woods institutions

(Leech and Leech, 2005), the European Union (Leech, 2002; Kóczy, 2012)

or the US Supreme Court (Kaniovski and Leech, 2009). Several such in-

dices have been defined and studied by game theory since Shapley and Shu-

bik (1954) defined the Shapley-Shubik index by applying the Shapley value

to simple games, despite the fact that there is nothing “game theoretical,”

strategic about them.

In cooperative games strategies are implicit, but players do maximise

their payoffs. The fairness represented by values assumes unconditional co-

operation. There is nothing wrong with fairness in problems of cost sharing

or risk allocation, but when we turn to voting situations, this approach seems

less fit. The current power indices seem to measure voting luck.

So what is power? Power is the “ability to act or produce an effect.”

(Definition by the Merriam-Webster online dictionary.) Strategic decisions

that increase a voter’s ability to make decisions are a manifestation of power.

What are the strategic decisions a voter can take? Kilgour (1974, 1977) intro-

duced the idea of quarrelling to voting games and axiomatised the Shapley

value for games with a quarrelling subset of players. Quarrelling players

refuse to cooperate, two such players refuse to join the same coalition so a

coalition may contain at most one quarrelling player. As the paradox of quar-

relling members (Brams, 1975) illustrates, two players may mutually benefit

from their quarrelling. Highly artificial these may seem (Laruelle and Va-

lenciano, 2005), the paradoxes of voting power arise in real voting situations

(van Deemen and Rusinowska, 2003).

In this paper we allow for similar strategic decisions, but as opposed to

quarrelling, coalitions can be rejected unilaterally.

Should all winning coalitions form? The structure of communication (My-

erson, 1977, 1980; Faigle and Kern, 1992) or physical or ideological position

(Bilbao, Jiménez, and López, 1998) may put restrictions on the set of feasi-

ble coalitions. Would all coalitions form in the absence of such restrictions?

When a player is offered to join a winning coalition, accepting will clearly

cause no harm, although a voter may turn down membership in a coali-
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tion where she gets no, or too little credit for membership expecting more

elsewhere. A priori, however, she may strictly benefit from a strategic com-

mitment to refuse to join this coalition.

Our model formalises this possibility: we augment voting games with a

previous stage, where players can choose the coalitions they want to join in

the voting game. This is a simple noncooperative game, where “the acquisi-

tion of power is the payoff” (Shapley, 1962, p. 59). We show that all known

normalised indices are affected by such strategic behaviour.

The use of the word strategic in the context of power indices is not entirely

new. There is a stream of literature who consider tactical voting and define

power indices for such situations (Steunenberg, Schmidtchen, and Koboldt,

1999; Napel and Widgrén, 2010).

The structure of the paper is as follows. We start with a brief introduction

to voting games and an overview of the known indices. We briefly explain the

paradox of quarrelling members, introduce a framework for strategic indices

and prove that our definition of strategic power index is well defined for a

wide class power indices.

2 Power indices

A voting situation or voting game is a pair (N,W), where N is the set of

voters and W ⊆ 2N denotes the set of winning coalitions. A game is simple

if

1. ∅ /∈ W ,

2. N ∈ W

3. if C ⊂ D and C ∈ W , then D ∈ W

4. If C ∈ W and D ∈ W , then C ∩D 6= ∅.

Condition 1 states that the empty set is not winning, while the coalition of all

players is winning. Condition 3 is a monotonicity property: if a coalition is

winning additional members cannot make it losing. Condition 4 requires the

game to be proper, that is, no two subsets of the voters can make decisions

simultaneously.
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2.1 Convex voting games

We consider convex voting games without the assumption that the grand

coalition is winning.

1. ∅ /∈ W ,

2. if C ⊂ D ⊂ E and C,E ∈ W , then D ∈ W

3. If C ∈ W and D ∈ W , then C ∩D 6= ∅.

Condition 2 is a convexity condition on the poset formed by the winning

coalitions. The Condition 2 replaces Condition 3, but the two coincide if

N ∈ W . Let Γ denote the collection of proper convex voting games satisfying

the above properties. Note that our model permits the trivial game (N,∅).

A player i is critical in the winning coalition C ∈ W if C \ {i} /∈ W . Let

kC(W) denote the number of critical players in coalition C when the set of

winning coalitions is W . When this does not lead to confusion, we drop the

reference to W .

Let M ⊆ W denote the set of minimal winning coalitions : the set of

coalitions without proper winning subsets. This implies that if C ∈ M and

i ∈ C, then C \ {i} /∈ W . Surplus coalitions are winning, but non-minimal.

All members of a minimal winning coalition are critical.

contributes to a decision provided that a decision has been reached.

Given a game Γ a power measure κ : Γ −→ RN
+ assigns to each player

i a non-negative real number κi, its power ; a power measure κ satisfying∑
i∈N κi = 1 is called a power index. The 0-game (N,∅) is an exception as

here each player has a power 0.

2.2 A characterisation

In the following we introduce a class of power indices κ, that can be expressed

as follows:

κi =
∑

C∈2N\∅

aCµCi , where
∑

C∈2N\∅

aC = 1, (2.1)

that is, the power of a player can be expressed as a weighted average of her

power or contribution µCi in the (winning) coalitions C ∈ 2N \ ∅ weighted

by the (relative) impact aC ≥ 0 of a coalition C. Note that aC accounts for

both the importance and the success of a coalition.
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This class is sufficiently large to include all known indices. Moreover we

can only talk about contributions by members, so µCi = 0 when i 6∈ C and

these indices recognise the contribution of critical players only, but for these

equally.

µCi =


1
kC

if i is critical
1
|C| if no i ∈ C is critical,

0 otherwise.

(2.2)

This also means that the differences are limited to the weights aC .

Let K =
{
C ∈ W|kC > 0

}
denote the set of winning coalitions with at

least one critical player. Clearly M⊆ K ⊆ W . Then we have

aCφ =
(|C| − 1)!kC(n− |C|)!

n!
. (2.3)

for the Shapley-Shubik index (Shapley and Shubik, 1954),

aCβ =
kC∑

C∈W k
C
. (2.4)

for the Banzhaf index (Penrose, 1946; Banzhaf, 1965),

aCγ =

{
1
|K| if C ∈ K
0 otherwise.

(2.5)

for the Johnston index γ (Johnston, 1978),

aCρ =

{
1
|M| if C ∈M
0 otherwise.

(2.6)

for the Deegan-Packel index ρ (Deegan and Packel, 1978), and

aCh =

{
kC∑

C∈M kC
if C ∈M

0 otherwise.
(2.7)

for the Holler-Packel or Public Good Index h (Holler and Packel, 1983).
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3 Strategic power indices

There may be various power indices, but they all work with an exogenously

given set W of winning coalitions and it is implicitly assumed that all these

coalitions will form. This seems indeed natural – why would players give up

part of their power? If, for instance, two players start to “quarrel” and refuse

to cooperate making any coalition they both belong to losing, their power

should decrease. Not necessarily. In the so-called “Paradox of Quarrelling

Members” (Kilgour, 1974; Brams, 1975) two players mutually benefit from

refusing to cooperate with each other.

Paradoxical or not is a matter of interpretation, but players can certainly

acquire a larger share of power by approving/rejecting coalitions. In this

paper we extend voting games to allow for strategic considerations where

player i can specify an arbitrary subset of 2N\{i} they reject. We do not

claim that rejected coalitions will not form, but that these should not be

taken into account when calculating voting power Braham and Holler (See

also 2005, on the understanding of power.). We define strategic power indices

by applying power indices to this reduced set of winning coalitions.

3.1 Examples

As a motivation we present a number of games based on weighted voting.

Here N is a collection of n interest groups, or parties having w1, w2, . . . , wn
individual representatives (wi ∈ N+). Let w =

∑n
i=1wi. We assume that a

quota of w ≥ q > w/2 is required to pass a bill. A coalition C of parties is

winning if and only if
∑

i∈C wi ≥ q. Since w ≥ q and wi ≥ 0 weighted voting

games are simple and proper.

Example 1. The game G1 consists of four players represented by their

weights (subscripts distinguish players with identical weights from each other):

31, 32, 21, 22 and voting has a quota of 6. The set winning coalitions is

W =
{

3132, 313221, 313222, 312122, 322122, 31322122

}
(with critical players un-

derlined). The Banzhaf index is β =
{

1
3
, 1
3
, 1
6
, 1
6

}
.

Notice that in coalition 313221 player 21 is not critical, while the two larger

players are. If 21 can prevent the formation of this coalition, the latter are

critical in fewer coalitions, so in relative terms (in a power index ) 21 gains.

GivenW ′ =
{

3132, 313222, 312122, 322122, 31322122

}
the recalculated Ban-

zhaf index is β′ =
{

3
10
, 3
10
, 1
5
, 1
5

}
. Player 21’s rejection increased its relative
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power. It is therefore not in player 21’s interest to join every winning coalition

it is invited to. This finding is not really surprising. In coalition 313221 player

21 assisted players 31 and 32 in forming a winning coalition, but without

getting any credit for it.

Similarly, we find that it is not in player 22’s interest to join 313222 and

we get W ′′ =M =
{

3132, 312122, 322122, 31322122

}
and β∗ =

{
1
4
, 1
4
, 1
4
, 1
4

}
.

where they are not critical. By this they do not lose power, on the

other hand, as the absolute powers of other, in the coalition critical players

decrease, relative power increases.

Minimal winning coalitions may also be subject to rejections:

Example 2. G2 is a 9-player game with players 51, 52, 53, 11, 12, 13, 14, 15, 16

and a quota of 11. Here M = {515253, 5i5j1k, 5i111213141516}, where k ∈
{1, 2, 3, 4, 5, 6} and i, j ∈ {1, 2, 3} with i 6= j. Let W = M. Then the

Banzhaf index is given by β =
{

7
39
, 7
39
, 7
39
, 1
13
, 1
13
, 1
13
, 1
13
, 1
13
, 1
13

}
.

Now considerW ′ = {515253, 5i5j1k, 5l111213141516}, where k ∈ {1, 2, 3, 4, 5, 6},
i, j ∈ {1, 2, 3} and l ∈ {2, 3}. Then β′ =

{
13
71
, 14
71
, 14
71
, 5
71
, 5
71
, 5
71
, 5
71
, 5
71
, 5
71

}
. The

set W ′ does not contain the minimal winning coalition 51111213141516, yet

the critical player 51 is better off as 13
71
> 7

39
.

Similarly we find that players 52 and 53 will respectively reject the coalitions

52111213141516 and 53111213141516 resulting in W ′′′ = {5i5j1k}, where k ∈
{1, 2, 3, 4, 5, 6} and i, j ∈ {1, 2, 3}. Then β′′′ =

{
2
9
, 2
9
, 2
9
, 1
18
, 1
18
, 1
18
, 1
18
, 1
18
, 1
18

}
.

For completeness note that it is not in the interest of any of the players to

further reduce the set of winning coalitions, so β∗ = β′′′.

In this example 51 is a large player with a large share of power, so he does

not benefit from participating in coalitions, where he plays a relatively minor

role as one of the many members. Such large players will only benefit from

joining coalitions with few members. Some players can increase their power

beyond what is given by the standard power indices simply by refusing to

participate in certain coalitions. Such coalitions that never form should not

be included in the calculations to determine voting power.

3.2 Model

We generalise the idea of quarrelling to coalitions: a coalition Q is rejected if

any of its members rejects Q. Player i’s strategy si therefore corresponds to
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quarrelling in certain coalitions that i belongs to, thus si ⊆ {C| i ∈ C} and

its strategy space Si ⊂ 2{C3i}.

A rejected coalition is therefore infeasible, so we might as well limit the

term winning to coalitions that are feasible and have the ability to pass

decisions. Note that rejection extends to supersets of coalitions, so C ∈ si and

C ⊆ D imply that D is, in effect, rejected, too. Therefore, given s = {si}i∈N
the strategy profile, they are collected by

W(s) = {W ∈ W| W + R ∀R ∈ si, ∀i ∈ N} =W \
⋃
i∈N

si. (3.1)

Observe that (N,W(s)) is a voting game, thus each strategy profile s

determines a voting game. In this game Conditions 1 and 3 clearly hold,

since no new winning coalitions have been added. On the other hand, as the

addition of new members to a rejected coalition does not make it winning,

convexity, that is: Condition 2 holds, too.

Definition 1. A strategic voting game is a quadruple (N,S,W , κ) consisting

of a set of players N , a strategy space S, a collection of initial winning

coalitions W and a power index κ.

As the objective of this game is to maximise power, the utility function

is nothing, but κ : S −→ RN
+ , s 7−→ κ(N,W(s)). Strategies are sets of

coalitions, the strategy space can be derived from the player set, therefore

the triple (N,W , κ) fully defines the game.

The game consists of two stages: a first, noncooperative game of rejecting

coalitions and a second, implicit, cooperative game of power allocation. We

seek allocations under equilibrium rejection, and the resulting equilibrium

sets of winning coalitions W∗.

3.3 Equilibria with no more rejection

Note the asymmetry in rejecting coalitions: a single player can reject a coali-

tion, but all members must stop rejecting it to make the coalition acceptable

again. Since our interest is not so much in the strategies selected by the play-

ers, but the equilibrium sets of winning coalitions W∗, it is rather natural to

seek equilibria in a game where only more rejection is permitted.

Proposition 1. The equilibrium sets of winning coalitions W∗ under this

game coincide with those of the original game.
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Proof. Firstly note that the restricted game allows for less deviations. Clearly,

the profitability of a particular deviation is the same in the two cases. There-

fore, if for W and for all s such that W(s) =W rejecting more coalitions is

profitable for one of the players, this will be true also in the original game.

Therefore the set of equilibrium sets of winning coalitions in the restricted

game contains the set of equilibrium sets of winning coalitions in the unre-

stricted case.

On the other hand for all equilibrium sets of winning coalitions W∗ from

the restricted game the strategy vector s where si = {C|C 3 i, C 6∈ W∗} is

also an equilibrium in the unrestricted game.

In the following we focus on the “restricted” game, where only more rejec-

tion is possible. Once a coalition has been rejected there is no renegotiation

despite incentives to make peace ex-post, and therefore only deviations with

more rejection are possible. A strategy profile is a Nash equilibrium if s is

a best response to itself, that is, κ(s) ≥ κ(s′i, s−i) for all i and s′i ∈ Si such

that s′i ⊇ si. The latter condition expresses the commitment to rejection,

they can only reject more and not less coalitions.

Given a power index κ the strategic κ power index is then a vector of equi-

librium payoffs, that is κ(s∗) = κ(N,W(s∗)), where s∗ is a Nash equilibrium:

for all i ∈ N and all si ⊆ s∗i , si ∈ Si we have κi(s
∗) ≥ κi(si, s

∗
−i).

Such a strategic power index always exists (W(s∗) = ∅ is an equilibrium),

but is generally not unique.

In the sequel we provide a unique refinement for indices that can be

written as Equation 2.1.

3.4 Only minimal winning coalitions

Rejecting a coalition B affects a player in two ways. On the one hand for

all C ⊇ B the coalition’s weight (recall the definition in Section 2) becomes

(aC)′ = 0 and hence the player loses
∑

C⊇B a
CµCi , on the other hand, due

to the normalisation, the weight of other coalitions increases, and hence the

credit it gets from other coalitions is scaled up by∑
C∈2N\∅ a

C∑
C∈2N\∅ a

C −
∑

C⊇B a
C
. (3.2)

Null players are unaffected and are therefore ignored in our analysis.
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Proposition 2. Surplus coalitions containing critical players are rejected.

Proof. Consider a coalition B containing a surplus player i. If i is not critical

in B, it is also not critical in C ⊃ B (as, by monotonicity if B\{i} is winning,

so is C \ {i} ⊃ B \ {i}) and therefore aCµCi = 0 for all C ⊇ B. In sum,

neither B nor C ⊃ B yields any profit for i.

On the other hand aB > 0 (and possibly aC > 0 for some C ⊃ B), so when

rejecting B the power of player i is scaled up according to Expression 3.2

making the rejection profitable.

Corollary 1. For power indices we have M⊇W∗.

However, even minimal winning coalitions can be rejected (see Exam-

ple 2).

In the following we focus on power indices for which aC > 0 only if C ∈
M. Holler and Packel (1983, p. 24.) argue that “since a non-critical member

. . . has no incentive to vote . . . only these coalitions should be considered

for measuring a priori voting power.” Thus a player cannot count on the

formation of coalitions that are not due to his or her power. A similar

prediction is made by aspiration solution concepts (Bennett, 1983, p. 15.).

3.5 Elementary rejections

Definition 2. Given a strategy profile s, let the deviation s′i is elementary

if |s′i| − |s1| = 1, that is, if s′i rejects a single additional coalition.

Proposition 3. Given a strategy profile s, let s′i be i’s best response to s−i.

Then s′i can be reproduced by a sequence of elementary deviations.

Proof. Proof by construction. Consider the best response s′i and let si \ s′i =

{C1, . . . , Ck} where, without loss of generality, µC1
i ≥ · · · ≥ µCk

i .

We show that κi(s
′) ≥ µ1. Consider the deviation s′′i = s′i \ C1. By

assumption

κi(s
′
i, s−i) ≥ κi(s

′′
i , s−i) (3.3)∑

C 6=∅ a
C∑

C 6=∅ a
C −

∑
s′′i
aC

∑
C 6∈s′i

aCµCi + aC1µC1
i

 (3.4)

κi(s
′
i, s−i) ≥

(∑
C 6=s′i

aC
)
κi(s

′
i, s−i) + aC1µC1

i∑
C 6=s′i

aC + aC1

(3.5)
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The right hand side is a weighted average of κi(s
′
i, s−i) and µC1

i , and hence

κi(s
′
i, s−i) ≥ µC1

i .

In the following we will only consider elementary deviations.

3.6 Friendly equilibrium selection

The strategy profile, whereW∗ = ∅ is clearly a Nash-equilibrium, while this

is neither the only one nor the one we want; out of the many Nash equilibria

we select a focal equilibrium.

We now move on to define our refinement.

The literature of power indices has been built on the assumption that all

winning coalitions form. We agree that it is a reasonable starting point to

assume that, unless for good reasons, players will be friendly and not reject

coalitions. Therefore also in our model we take this as the status quo; when

strategic considerations do not play a major role, the equilibrium remains

s = ∅, and a coalition is only rejected if this increases a player’s power. This

last observation translates to the fact that for any acceptable equilibrium,

there is a sequence of elementary deviations where each of the rejections are

introduced all the way back to the status quo. Put it differently: any other

equilibrium builds on the assumption that at least one coalition has been

rejected irrationally.

The friendly set F , defined below collects the acceptable strategy profiles.

s ∈ F if

{
si = ∅ ∀i ∈ N , or

∃i ∈ N,∃(s′i, s−i) ∈ F, such that κi(s) > κi(s
′
i, s−i).

We select friendly equilibria s∗ ∈ F that are Nash equilibria and are maximal

for inclusion. The equilibrium set of winning coalitions is W∗ = W(s∗) and

the strategic κ power index is defined as

κ∗ = κ(s∗) = κ(N,W∗).

Example 1. continued. Figure 1 shows the rejection game of Example 1.

Each node of this lattice corresponds to a set of winning coalitions corre-

sponding to a strategy profile. At the top all winning coalitions are accepted,

at the bottom all are rejected. Dashed lines indicate where would the game

continue if a particular coalition would be rejected by one of the players,
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W1

W2 W
*

Figure 1: The rejection game for Example 1: At the top no, at the bottom

all coalitions are rejected. Arrows are deviations, Nash equilibria are circled.

arrows show the relations where such a rejection is profitable. Nodes where

no profitable deviations are possible are circled and are the Nash-equilibria

of the game.

Node W1, for instance, has already coalition 312122 rejected, here we

have β(N,W1) =
(
3
9
, 4
9
, 1
9
, 1
9

)
. Clearly no player in the rejected coalition

benefits to get these payoffs from the original β =
(
1
3
, 1
3
, 1
6
, 1
6

)
. For this

node there are three profitable deviations: rejecting coalition 322122 by 32

giving β(N,W2) =
(
1
2
, 1
2
, 0, 0

)
, or rejecting 313221 by 21 or 313222 by 22 to

get
(
2
7
, 3
7
, 1
7
, 1
7

)
in both cases.

Note that no further profitable rejections exist atW2, that is, after 312122

and 322122 have been rejected, so W2 corresponds to a Nash equilibrium of

the game.

On the other hand this equilibrium assumes that the coalition 312122 has

also been rejected and for no particular reason. Without arbitrary rejections

we would get to W∗, which is also a Nash-equilibrium, but this is a friendly
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Nash equilibrium. As a friendly equilibrium it is unique and we will see that

this is a general result.

Now observe that for minimal winning coalitions C 6= D we have neither

C ⊂ D nor D ⊂ C, therefore by rejecting C a player will not reject D

and vice versa, a player has the possibility to reject each minimal winning

coalition separately. In sum, our model can be reduced to players picking

which coalitions they do not want to form. This result makes it particularly

easy to work with coalitions rather than strategies. Then an equilibrium is

simply W∗ instead of W(s∗) and let F = {W(s)|s ∈ F}.
Player i profitably rejects coalition B iff

κi(N,W \ {B}) > κi(N,W) (3.6)∑
C∈W a

C∑
C∈W a

C − aB

(∑
C∈W

aCµCi − aBµBi

)
>

∑
C∈W

aCµCi (3.7)

After some rearrangements we get∑
C∈W a

CµCi∑
C∈W a

C
= κi(N,W) > µBi , (3.8)

which gives the following result.

Lemma 1. A rejection by player i is profitable if and only if player i has

less power in the rejected coalition than on average, as given by the strategic

power index.

Proposition 2 can also be seen as a corollary of this lemma.

Lemma 1 also suggests a relation to the theory of aspirations (Bennett,

1983), although this relation turns out to be superficial. In the theory of

aspirations it is not some coalition’s payoff that is bargained over: it is the

players who make their claims, and unless their claims are satisfied, certain

coalitions will or will not form. Here this claim is expressed by their power

index, the “credit they receive in general” and players demand the same

credit in coalitions. Unfortunately the link between the two concepts does

not go much beyond that. While a power index satisfies
∑

i∈N κ
∗
i = 1 a vector

of aspirations will almost always be larger. For instance, Bennett (1983, p.

15.) provides an example with 5 players with weights 2, 2, 1, 1, and 1, and

a quota of 5. Here the unique partnered, balanced, equal gains aspiration is

(0.4, 0.4, 0.2, 0.2, 0.2), while the public good index is h = ( 4
17
, 4
17
, 3
17
, 3
17
, 3
17

).

Now we move on to our main result.
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Theorem 1. The friendly equilibrium set of winning coalitions is uniquely

defined and is given by

W∗ =
⋂
s∈F

W(s). (3.9)

In order to prove this theorem we need some additional results.

Proposition 4. Let Ci, Cj ∈ W be coalitions that both contain both i and

j and such that i and j can profitably reject Ci and Cj respectively. Then

either i can profitably reject Cj or j can profitably reject Ci.

Proof. Assume that the proposition is false. This means the following. Player

j rejects Cj, hence µ
Cj

j < κj(W). By our assumption j does not reject Ci,

hence µCi
j ≥ κj(W). Therefore µ

Cj

j < µCi
j . Similarly i rejects Ci, hence

µCi
i < κi(W). By our assumption i does not reject Cj, hence µ

Cj

i ≥ κi(W).

Therefore µCi
i < µ

Cj

i . In sum µ
Cj

j < µCi
j and µCi

i < µCi
j . Since Ci and Cj

are minimal winning coalitions µCi
i = µCi

j = 1
|Ci| and µ

Cj

j = µ
Cj

i = 1
|Cj | . Thus

1
|Cj | <

1
|Ci| and 1

|Ci| <
1
|Cj | . Contradiction.

Proposition 5. For all Wi,Wj ∈ F we have Wi ∩Wj ∈ F .

Proof. The proof is by induction on the differences between Wi and Wj.

First we deal with the elementary step. AssumeWi = {A,C1, C2, . . . Cm},
Wj = {B,C1, C2, . . . Cm}, that is, the two sets only differ in 1 element each.

This ensures that their intersection is non-trivial. Wi andWj are descendants

of a common ancestorW0 = {A,B,C1, C2, . . . Cm}, but after rejecting B and

A, respectively by some players i and j. The proposition merely states that

either rejecting A is profitable from Wi or rejecting B is profitable from Wj.

Wi is the result of rejecting B by i. If j /∈ B then κj(W0) ≤ κj(Wi). We

know that j rejects A at W0 and hence κj(W0) > µAj . Hence κj(Wi) > µAj ,

which implies that j also rejects A at Wi. Thus Wij = {C1, C2, . . . Cm} ∈ F .

The symmetric case gives the corresponding result for i and B at Wj.

Finally we must consider the case where none of the previous two cases

applied, that is where j ∈ B and i ∈ A. As only a member can reject a coali-

tion, we also have j ∈ A and i ∈ B. Therefore we can apply Proposition 4

to show that i rejects at Wj or j at Wi, which, as before, gives the result.

We have discussed all possible cases, which completes the first part of the

proof. Now we move on to the general case. Assume that we have shown the

result for all pairs of sets with differences up to k − 1.
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Now consider Wi = {A1, A2, . . . , Ak, C1, C2, . . . Cm} as well as Wj =

{B1, B2, . . . , Bl, C1, C2, . . . Cm}, where A1, A2, . . . , Ak and B1, B2, . . . , Bl rep-

resent the rejections that did not take place and l ≤ k. (Possibly Ap = Bq

for some p and q.) The question is whether this difference can be eliminated.

By definition ifWi ∈ F there exists a sequence of rejections starting from

W0 that lead to Wi and a similar sequence exists to Wj. Let W0
i and W0

j be

the first elements that are not common, without loss of generality, as results

of rejecting B1 and A1 respectively. By the elementary step W1
j =W0

i ∩W0
j

belongs to F . (Our notation is slightly misleading given that W1
j is not

necessarily on the path to Wj, but this should not lead to confusion.) Now

take the next set W2 along the path to Wi, W1
i . By the same argument

W1
i ∩W1

j also belongs to F . Repeating this argument we travel parallel to

the path and in the penultimate step we get Wp
j ∈ F . For the last time by

the same argument Wi ∩ Wp
j = {A2, . . . , Ak, C1, C2, . . . Cm} also belongs to

F . If l < k, the inductive assumption completes the proof.

In case l = k it is necessary to apply the same argument once more, but

on the other side: to show that {B2, . . . , Bl, C1, C2, . . . Cm} ∈ F .

Proof of Theorem. By Proposition 5 pairwise intersections of elements of F
also belong to F . As the number of winning coalitions is finite the result on

pairwise intersections implies that W∗ as defined in Equation 3.9 belongs to

F . ClearlyW∗ ⊆ WF for allWF ∈ F . ThereforeW∗ is the smallest friendly

set and it is trivially an equilibrium.

Corollary 2. The strategic power index κ∗ is well-defined.

4 Conclusion

The power index approach sees power as the probability of being critical

to a winning coalition. As such, it ignores the strategic aspects of forming

winning coalitions. In our model the implicit cooperative game is preceded

by a noncooperative stage where players decide which (winning) coalitions

may form: only those with unanimous agreement. It turns out that there is

a well-defined refinement of the Nash-equilibria of this game allowing us to

define strategic power indices.

While the calculation of strategic power indices for larger problems is

computationally difficult, strategic considerations may influence power dis-

tribution in such well-studied weighted voting situations as the voting in the
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Council of the European Union (formerly Council of Ministers). Accord-

ing to the Lisbon Treaty the support of 55% of the countries (when acting

on a proposal from the Commission or from the High Representative) and

65% of the population is required to form a coalition. We have calculated

the Public Good Index values using the software IOP-Indices of Power 2.05

(Bräuninger and König, 2005) and the population data currently used in the

Council (Council of the European Union, 2014). We found that Germany,

the largest EU member state has 5.56% or a little over 1
18

of the voting power,

while it is a member of minimal winning coalitions with up to 25 members.

Our model suggests that it will prefer to cooperate with smaller coalitions,

ideally with less than 18 members. Besides Germany, also the other large

members not included in the large coalitions (that consist of small countries,

mostly) also benefit from such a move. Technical limitations inhibit us from

conducting a full analysis, but it is expected that large member states will

only participate in minimal winning coalitions that are also minimal in size,

that is, with 16 members resulting in a higher power concentration than

estimated using non-strategic power indices.

There is an interesting alternative to the underlying problem. To see this

consider an initial set W of winning coalitions and a rejected coalition C.

By Lemma 1 µCi > κi(N,W) for the rejecting player(s). Since
∑

i∈C µ
C
i = 1

and
∑

i∈C κi(N,W) < 1 the total power of the members of the coalition

decreases after the rejection. While rejecting C benefits some members, it

harms others. It would be more efficient to renegotiate the µCi values in the

coalition. Currently power indices do not allow for that, but it would be

interesting to see if there exist rejection-proof allocations of credit within

coalitions. In practice, such as in the Council example above, it is very

natural that less powerful voters make smaller claims than larger members

of a minimal winning coalition.

Two other choices we have made was to assume that rejecting coalition

C also rejects D ⊃ C, and to work with power indices defined over minimal

winning coalitions only. Rejecting a single coalitions would not preserve null

players who could gain power for “mediation” (turning a rejected coalition

into a (non-rejected) winning one by their entry – of course this coalition

would be rejected soon, too) and would allow non-minimal winning coalitions

that are not surplus coalitions as they would only consist of critical players.

While our original model considered a variant of this alternative, in order to

avoid such odd phenomena one has to separate the notions of winning and
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feasibility.

At last we note that the uniqueness proof of the friendly equilibrium relies

on the assumption that only minimal winning coalitions are considered. In

the aforementioned model we could find counterexamples, but not here. Even

a systematic search for them was in vain, so now we are inclined to believe

the result extends to all power indices. The proof of this claim remains,

however, open.
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